10.0 µm # Algae Biotechnology A brief history and the state of the art # Aquatic Species Program - Initiated 1978 - Closed in 1996 - Primary Goal: - Biodiesel from Algae - Use CO₂ from Coal fired powerplants NREL/TP-580-24190 A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae Close-Out Report # Aquatic Species Program Accomplishments - Collection of algae (~300 isolates) - Mostly from southwest - Enzyme isolation and expression - First successful genetic manipulation of a diatom (No increase in oil) - Outdoor Test Facility (Roswell, New Mexico) - Open, raceway ponds - Year round production - Highly efficient CO2 utilization (>90%) - "Algal biodiesel could easily supply several "quads" of biodiesel substantially more than existing oilseed crops could provide. The Raceway Pond | | Base Case
Process
(Current) | Improved
Process I
(Mid-Term) | Improved Process II (Long-Term) | |---|-----------------------------------|-------------------------------------|---------------------------------| | Cell concentration, g/L | 0.8 | 1.0 | 1.2 | | Lipid content, % wt | 30 | 45 | 50 | | Residence time, d | 7 | 5.5 | 4 | | Operating season, d/yr | 250 | 275 | 300 | | Productivity, g/m²/d | 17.1 | 27.3 | 45 | | Photosynthetic efficiency, % | 4,9 | 8.6 | 14.6 | | Algae cost, \$/t | 399.7 | 282.5 | 209.5 | | Lipid cost, \$/bbl, \$/gal (unextracted) | 186.3 / 4.44 | 87.7 / 2.09 | 58.6 / 1.40 | | Lipid cost, \$/bbl, \$/gal with CO ₂ credit ² (unextracted) | 148.6 / 3.54 | 59.0 / 1.41 | 31.3 / 0.74 | | CO ₂ cost, % of annual cost | 16.4 | 26.6 | 37.9 | | CO ₂ mitigation cost ³ , \$/t CO ₂ | 156.8 | 63.8 | 20.0 | $^{^{1}}CO_{2}$ recovery cost = \$40/t Kadam, K.L. (1994) "Bioutilization of coal combustion gases." Draft Milestone Completion Report, Recovery & Delivery, National Renewable Energy Laboratory, Golden, Colorado. $^{^{2}}CO_{2}$ credit = \$50/t CO_{2} ³Based on credit at the following rate: lipid = \$240/t, protein = \$120/t, carbohydrate = \$120/t ### **ASP Outdoor Raceway Conclusions** Low nighttime and winter temperatures limited productivity Overall biomass productivity averaged around 10 g/m2/day with occasional periods approaching 50 g/m2/day. One serious problem encountered was that the desired starting strain was often outgrown by faster reproducing, but lower oil producing, strains from the wild. #### ASP Recommended Future Research - 1. Put less emphasis on outdoor field demonstrations and more on basic biology - 2. Take Advantage of Plant Biotechnology - 3. Start with what works in the field - 4. Maximize photosynthetic efficiency - 5. Set realistic expectations for the technology - 6. Look for near term, intermediate technology deployment opportunities such as wastewater treatment ### DOE Algae Roadmap- 2010 U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information ### DOE Algae Roadmap- 2010 Overview #### Energy Independence and Security Act (EISA) 2007 **Exhibit 1.1** Renewable Fuel Standard volume requirements (billion gallons) Cellulosic biofuels and biomass-based diesel are included in the advanced biofuel requirement. | | CELLULOSIC
BIOFUEL
REQUIREMENT | BIOMASS-BASED
DIESEL
REQUIREMENT | ADVANCED BIOFUEL
REQUIREMENT | TOTAL RENEWABLE
FUEL REQUIREMENT | |------|--------------------------------------|--|---------------------------------|-------------------------------------| | 2009 | N/A | 0.5 | 0.6 | 11.1 | | 2010 | 0.1 | 0.65 | 0.95 | 12.95 | | 2011 | 0.25 | 0.80 | 1.35 | 13.95 | | 2012 | 0.5 | 1.0 | 2.0 | 15.2 | | 2013 | 1.0 | а | 2.75 | 16.55 | | 2014 | 1.75 | а | 3.75 | 18.15 | | 2015 | 3.0 | a | 5.5 | 20.5 | | 2016 | 4.25 | а | 7.25 | 22.25 | | 2017 | 5.5 | а | 9.0 | 24.0 | | 2018 | 7.0 | а | 11.0 | 26.0 | | 2019 | 8.5 | а | 13.0 | 28.0 | | 2020 | 10.5 | а | 15.0 | 30.0 | | 2021 | 13.5 | а | 18.0 | 33.0 | | 2022 | 16.0 | а | 21.0 | 36.0 | | 2023 | b | b | b | b | [•] To be determined by EPA through a future rulemaking, but no less than 1.0 billion gallons. ^b To be determined by EPA through a future rulemaking. #### Why Algae? Exhibit 1.2 Comparison of oil yields from biomass feedstocks^a | CROP | OIL YIELD
(GALLONS/ACRE/YR) | |-----------|--------------------------------| | Soybean | 48 | | Camelina | 62 | | Sunflower | 102 | | Jatropha | 202 | | Oil palm | 635 | | Algae | 1,000-6,500b | ^a Adapted from Chisti (2007) ^b Estimated yields, this report #### Photosynthetic Efficiency | (1) | (2) | (3) | (4) | - | Solar radiation | c | (8) | |----------------|--|---|--------------------------------|--|---|---|----------------------------------| | Crop plant | Production
of dry
matter
(g/cm2) ^a | Chemical
energy of
dry matter
evaluated
as CH 20
(exgs/cm2 | Growing
period ⁵ | (5)
Total
radiation
received
(cal/cm2) | (6) Usable in photosynthesis (Aluding inf _{TM} red) (cal/cm²) | Values of column 6 in erespect 2 × 10 2 | Efficiency column 3 column 7 (%) | | Onions | 3.5 | 0.55 | April-
Sept. | 58,000 | 29,000 | 122 | 0.45 | | Carrots | 6.86 | 1.07 | May-
Oct. | 54,400 | 27,200 | 1.14 | 0.94 | | Potatoes | 9.6 | 15 | April-
Sept. | 58,000 | 29,000 | 1.22 | 1.23 | | Wheat | 10.45 | 1.62 | Nov
Aug. | 61,000 | 30,500 | 128 | 126 | | Rye grass | | | | 67.500 | 22.000 | 1.40 | 1.12 | | (Lolium) | 10.2 | 1.60 | March-
Oct. | 67,500 | 33,800 | 1.42 | 1.13 | | Beets, mangels | | 2.5 | May-
Oct. | 54,400 | 27,200 | 1.14 | 2.20 | | Maize | | 2.0 | May 10-
Sept. 10 | 43,600 | 21,800 | 0.92 | 2.18 | | Sugar cane | | 5.2 | April-
March | 129,000<* | 64,500 | 2.70 | 1.92 | a From agricultural data. k The months named are included. ^c Calculated after Reesinck [266], measurements made at Wageningen (except those for sugar cane). d Recalculated from recent measurements by Dee and Reesinck at Djakarta [214{a)]. This value is not far from the one used previously [295], derived from data reported by Boerema in 1920 (cf. [295]), viz., 120,000 cal/cm2, yielding an efficiency of 2.05 per cent. ^{**}Algae can have photosynthetic efficiencies over 10%!** ## Co-products Distribution and Siting Algal Biology Algal Cultivation Harvesting and Dewatering Fractionation Conversion #### Where are the breakthroughs needed? - Algal biology - Who do we grow? - What is the best method of cultivation? - Algae Harvesting - The most expensive process in algae cultivation! - Algae fuel generation and conversion - Lipid extraction - Biodiesel, Biojet fuel production - Residual utilization - Anaerobic digestion - Animal feed evaluation - Utilization of algal fuels - Beyond our scope! #### DOE Algae Roadmap- 2010 Overview #### **OVERCOMING BARRIERS TO ALGAL BIOFUELS: TECHNOLOGY GOALS** | PROCESS
STEP | R&D CHALLENGES | |------------------------------|---| | Algal Biology | Sample strains from a wide variety of environments for maximum diversity Develop small-scale, high-throughput screening technologies Develop open-access database and collections of existing strains with detailed characterization Investigate genetics and biochemical pathways for production of fuel precursors Improve on strains for desired criteria by gene manipulation techniques or breeding | | Algal
Cultivation | Investigate multiple approaches (i.e., open, closed, hybrid, and coastal/off-shore systems; phototrophic, heterotrophic, and mixotrophic growth) Achieve robust and stable cultures at a commercial scale Optimize system for algal productivity of fuel precursors (e.g., lipids) Sustainably and cost-effectively manage the use of land, water, and nutrients Identify and address environmental risks and impacts | | Harvesting and
Dewatering | Investigate multiple harvesting approaches (e.g., sedimentation, flocculation, dissolved air floatation, filtration, centrifugation, and mechanized seaweed harvesting) Minimize process energy intensity Lower capital and operating costs Assess each technology option in terms of overall system compatibility and sustainability | #### Methods of cultivation- State of the Art Fence-like solar collector Raceway designs # More methods of cultivation 1000L helical bioreactor M. Borowitzka (Australia) Horizontal tubular photobioreactor Y. Chisti / Biotechnology Advances 25 (2007) 294–306 # More methods of cultivation René H. Wijffels¹ and Maria J. Barbosa² # Open (pond) and Closed (photobioreactor) Systems **Table 1.** A comparison of open and closed systems for microalgae [18, 97]. | | Open systems | Closed systems | |------------------------|--------------|----------------| | Contamination risk | High | Low | | CO ₂ losses | High | Low | | Evaporative losses | High | Low | | Light use efficiency | Poor | Excellent | | Area/volume ratio | Low | High | | Area required | High | Low | | Process control | Difficult | Easy | | Biomass productivities | Low | High | | Investment costs | Low | High | | Operation costs | Low | High | | Harvesting costs | High | Relatively low | | Scale-up | Easy | Difficult | L. Xu et al. Eng. Life Sci. 2009, 9, No. 3, 178-189 #### Some Algae of Current *Mainstream* Interest #### Oil content of some microalgae | Microalga | Oil content (% dry wt) | | |---------------------------|------------------------|--| | Botryococcus braunii | 25–75 | | | Chlorella sp. | 28-32 | | | Crypthecodinium cohnii | 20 | | | Cylindrotheca sp. | 16–37 | | | Dunaliella primolecta | 23 | | | Isochrysis sp. | 25–33 | | | Monallanthus salina | >20 | | | Nannochloris sp. | 20–35 | | | Nannochloropsis sp. | 31–68 | | | Neochloris oleoabundans | 35-54 | | | Nitzschia sp. | 45–47 | | | Phaeodactylum tricornutum | 20-30 | | | Schizochytrium sp. | 50-77 | | | Tetraselmis sueica | 15–23 | | ### The Ideal Alga #### An Outlook on Microalgal Biofuels René H. Wijffels¹ and Maria J. Barbosa² ### \$ of Algae Oil #### **Triglyceride Production Cost** ### 'Commercial' Algae Production - Health supplements (actual) - Earthrise (Spirulina; California) - Cyanotech (Spirulina, Hematococcus; Hawaii) - SunChlorella (Chlorella; Japan) - Far East BioTech (Chlorella; China) - Many small 'boutique' producers of Spirulina and Chlorella - Biofuels (theoretical) - Algae Tec - Algenol - AquaFlow - Aurora - BioVantage - Blue Marble - Cellana - Green Star Products - Heliae Development LLC - HR Biopetroleum - Joule Biotechnologies - Kent Bioenergy Corporation - LiveFuels - Origin Oil - PetroAlgae - PetroSUn - Photon8 - Phycal - Sapphire Energy - Seambiotic - Solazyme - Solix - Synthetic Genomics # Physical, biological and ecological limitations #### Physical - Light diffusion into dense cultures - Diffusion of heat - Efficient gas exchange #### Biological - Photo-inhibition - Photo-oxidation - Matching photosynthetic capacity with carbon fixation #### Ecological - Increasing culture stability - Reducing impact of viruses and predators - Sustainable water and nutrient supplies - Wastewater remediation (and utilization) ### Current work in the laboratory-Phycoprospecting #### Algal Genera: - Scenedesmus spp. - Chlorella spp. - Gloeochloris sp. - Ankistrodesmus sp. - Kirchneriella sp. - Chlamydomonas sp. - Selenastrum sp. - Pandorina sp. - Unidentified spp. - Morphologically identified to genus level. - Prescott, G.W. 1978. How to Know the Freshwater Algae, 3rd Edition. WCB/McGraw-Hill, Boston, Massachussetts. ## Ankistrodesmus sp. - Dominant organism in 75% landfill leachate. - Unique morphology - Accumulates lipids ## Ankistrodesmus sp. ## Chlorella cf. ellipsoidea - Present in all concentrations of leachate - Dominant growth in low concentrations of leachate - Accumulates lipids ### Scenedesmus cf. rubescens - Single cell, can form colonies - -~10um in diameter - Settles well - Appears not to accumulate oils #### Rhizoclonium sp. - Filamentous (easy to harvest) - Stores oil! - Need to develop method of cultivation #### Outdoor Cultivation at Landfill