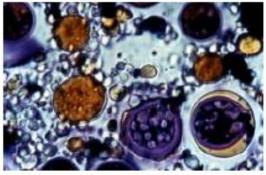

10.0 µm

Algae Biotechnology

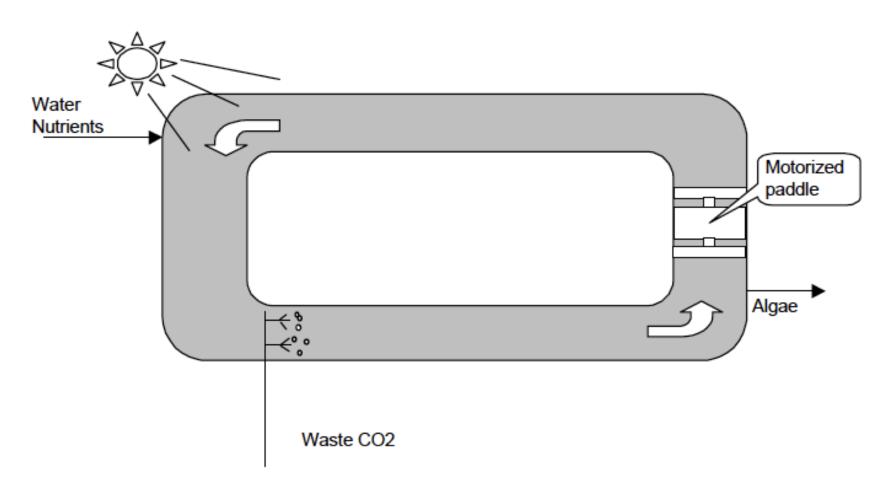
A brief history and the state of the art

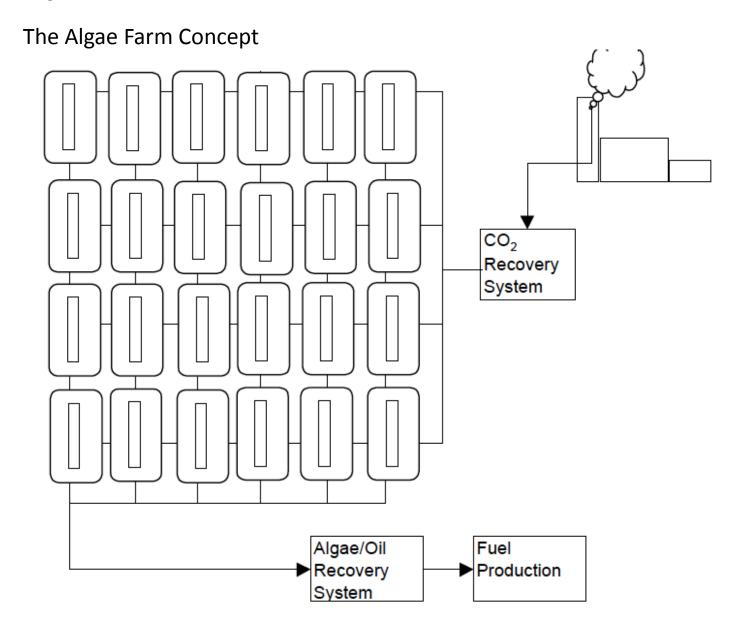

Aquatic Species Program

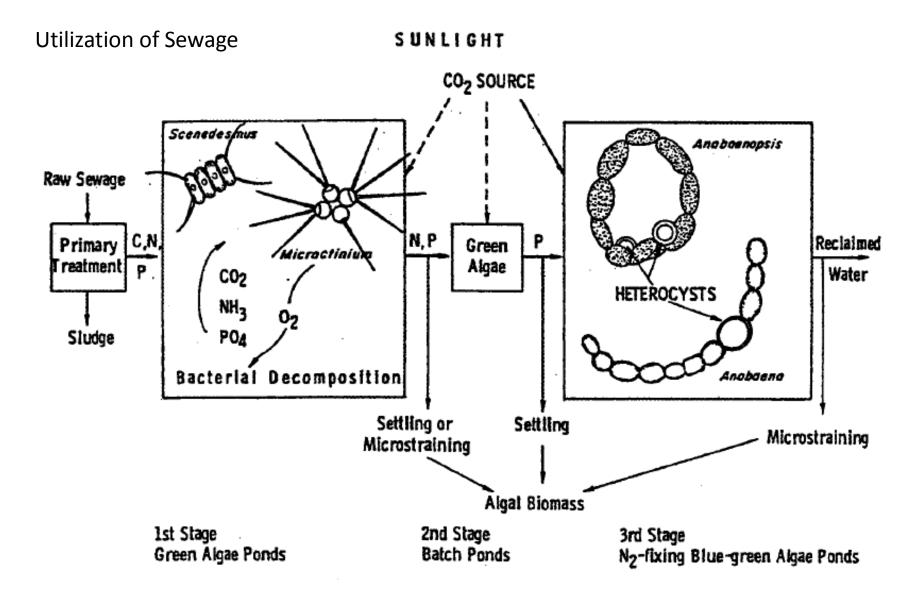
- Initiated 1978
- Closed in 1996
- Primary Goal:
 - Biodiesel from Algae
 - Use CO₂ from Coal fired powerplants

NREL/TP-580-24190

A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae


Close-Out Report


Aquatic Species Program Accomplishments


- Collection of algae (~300 isolates)
 - Mostly from southwest
- Enzyme isolation and expression
 - First successful genetic manipulation of a diatom
 (No increase in oil)

- Outdoor Test Facility
 (Roswell, New Mexico)
 - Open, raceway ponds
 - Year round production
 - Highly efficient CO2 utilization (>90%)
- "Algal biodiesel could easily supply several "quads" of biodiesel substantially more than existing oilseed crops could provide.

The Raceway Pond

	Base Case Process (Current)	Improved Process I (Mid-Term)	Improved Process II (Long-Term)
Cell concentration, g/L	0.8	1.0	1.2
Lipid content, % wt	30	45	50
Residence time, d	7	5.5	4
Operating season, d/yr	250	275	300
Productivity, g/m²/d	17.1	27.3	45
Photosynthetic efficiency, %	4,9	8.6	14.6
Algae cost, \$/t	399.7	282.5	209.5
Lipid cost, \$/bbl, \$/gal (unextracted)	186.3 / 4.44	87.7 / 2.09	58.6 / 1.40
Lipid cost, \$/bbl, \$/gal with CO ₂ credit ² (unextracted)	148.6 / 3.54	59.0 / 1.41	31.3 / 0.74
CO ₂ cost, % of annual cost	16.4	26.6	37.9
CO ₂ mitigation cost ³ , \$/t CO ₂	156.8	63.8	20.0

 $^{^{1}}CO_{2}$ recovery cost = \$40/t

Kadam, K.L. (1994) "Bioutilization of coal combustion gases." Draft Milestone Completion Report, Recovery & Delivery, National Renewable Energy Laboratory, Golden, Colorado.

 $^{^{2}}CO_{2}$ credit = \$50/t CO_{2}

³Based on credit at the following rate: lipid = \$240/t, protein = \$120/t, carbohydrate = \$120/t

ASP Outdoor Raceway Conclusions

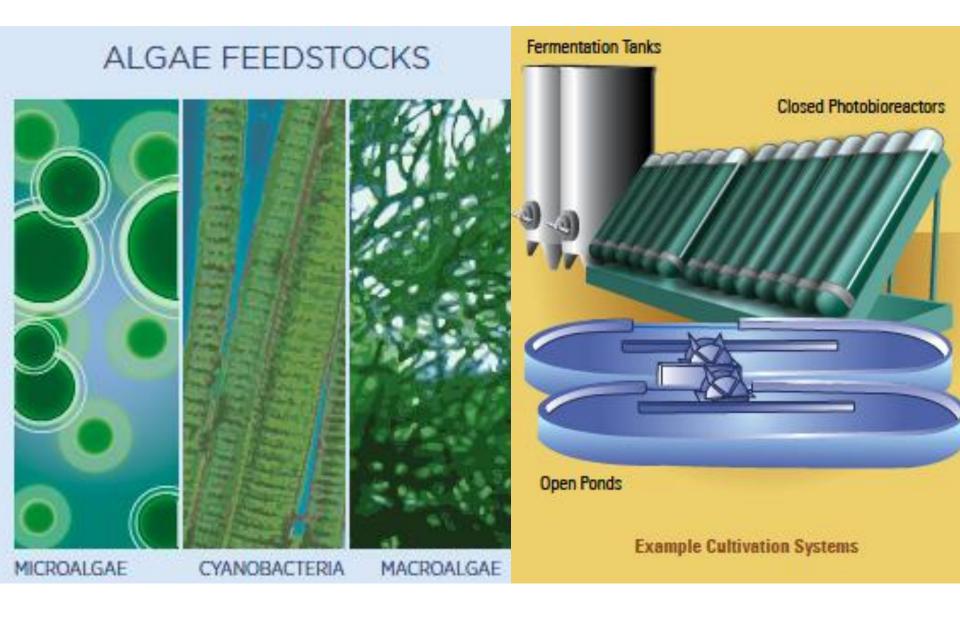
 Low nighttime and winter temperatures limited productivity

 Overall biomass productivity averaged around 10 g/m2/day with occasional periods approaching 50 g/m2/day.

 One serious problem encountered was that the desired starting strain was often outgrown by faster reproducing, but lower oil producing, strains from the wild.

ASP Recommended Future Research

- 1. Put less emphasis on outdoor field demonstrations and more on basic biology
- 2. Take Advantage of Plant Biotechnology
- 3. Start with what works in the field
- 4. Maximize photosynthetic efficiency
- 5. Set realistic expectations for the technology
- 6. Look for near term, intermediate technology deployment opportunities such as wastewater treatment


DOE Algae Roadmap- 2010

U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program.

Visit http://biomass.energy.gov for more information

DOE Algae Roadmap- 2010 Overview

Energy Independence and Security Act (EISA) 2007

Exhibit 1.1 Renewable Fuel Standard volume requirements (billion gallons)

Cellulosic biofuels and biomass-based diesel are included in the advanced biofuel requirement.

	CELLULOSIC BIOFUEL REQUIREMENT	BIOMASS-BASED DIESEL REQUIREMENT	ADVANCED BIOFUEL REQUIREMENT	TOTAL RENEWABLE FUEL REQUIREMENT
2009	N/A	0.5	0.6	11.1
2010	0.1	0.65	0.95	12.95
2011	0.25	0.80	1.35	13.95
2012	0.5	1.0	2.0	15.2
2013	1.0	а	2.75	16.55
2014	1.75	а	3.75	18.15
2015	3.0	a	5.5	20.5
2016	4.25	а	7.25	22.25
2017	5.5	а	9.0	24.0
2018	7.0	а	11.0	26.0
2019	8.5	а	13.0	28.0
2020	10.5	а	15.0	30.0
2021	13.5	а	18.0	33.0
2022	16.0	а	21.0	36.0
2023	b	b	b	b

[•] To be determined by EPA through a future rulemaking, but no less than 1.0 billion gallons.

^b To be determined by EPA through a future rulemaking.

Why Algae?

Exhibit 1.2 Comparison of oil yields from biomass feedstocks^a

CROP	OIL YIELD (GALLONS/ACRE/YR)
Soybean	48
Camelina	62
Sunflower	102
Jatropha	202
Oil palm	635
Algae	1,000-6,500b

^a Adapted from Chisti (2007)

^b Estimated yields, this report

Photosynthetic Efficiency

(1)	(2)	(3)	(4)	-	Solar radiation	c	(8)
Crop plant	Production of dry matter (g/cm2) ^a	Chemical energy of dry matter evaluated as CH 20 (exgs/cm2	Growing period ⁵	(5) Total radiation received (cal/cm2)	(6) Usable in photosynthesis (Aluding inf _{TM} red) (cal/cm²)	Values of column 6 in erespect 2 × 10 2	Efficiency column 3 column 7 (%)
Onions	3.5	0.55	April- Sept.	58,000	29,000	122	0.45
Carrots	6.86	1.07	May- Oct.	54,400	27,200	1.14	0.94
Potatoes	9.6	15	April- Sept.	58,000	29,000	1.22	1.23
Wheat	10.45	1.62	Nov Aug.	61,000	30,500	128	126
Rye grass				67.500	22.000	1.40	1.12
(Lolium)	10.2	1.60	March- Oct.	67,500	33,800	1.42	1.13
Beets, mangels		2.5	May- Oct.	54,400	27,200	1.14	2.20
Maize		2.0	May 10- Sept. 10	43,600	21,800	0.92	2.18
Sugar cane		5.2	April- March	129,000<*	64,500	2.70	1.92

a From agricultural data.

k The months named are included.

^c Calculated after Reesinck [266], measurements made at Wageningen (except those for sugar cane).

d Recalculated from recent measurements by Dee and Reesinck at Djakarta [214{a)]. This value is not far from the one used previously [295], derived from data reported by Boerema in 1920 (cf. [295]), viz., 120,000 cal/cm2, yielding an efficiency of 2.05 per cent.

^{**}Algae can have photosynthetic efficiencies over 10%!**

Co-products Distribution and Siting

Algal Biology

Algal Cultivation

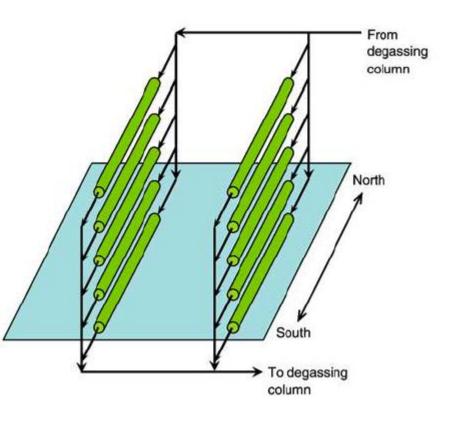
Harvesting and Dewatering

Fractionation

Conversion

Where are the breakthroughs needed?

- Algal biology
 - Who do we grow?
 - What is the best method of cultivation?
- Algae Harvesting
 - The most expensive process in algae cultivation!
- Algae fuel generation and conversion
 - Lipid extraction
 - Biodiesel, Biojet fuel production
 - Residual utilization
 - Anaerobic digestion
 - Animal feed evaluation

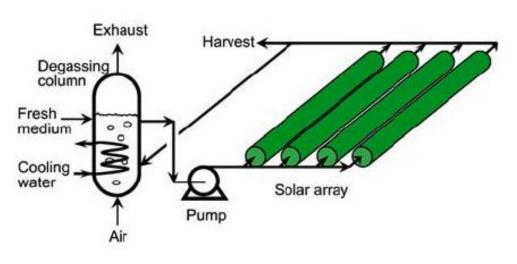

- Utilization of algal fuels
 - Beyond our scope!

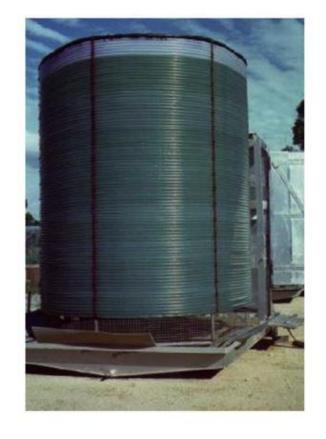
DOE Algae Roadmap- 2010 Overview

OVERCOMING BARRIERS TO ALGAL BIOFUELS: TECHNOLOGY GOALS

PROCESS STEP	R&D CHALLENGES
Algal Biology	 Sample strains from a wide variety of environments for maximum diversity Develop small-scale, high-throughput screening technologies Develop open-access database and collections of existing strains with detailed characterization Investigate genetics and biochemical pathways for production of fuel precursors Improve on strains for desired criteria by gene manipulation techniques or breeding
Algal Cultivation	 Investigate multiple approaches (i.e., open, closed, hybrid, and coastal/off-shore systems; phototrophic, heterotrophic, and mixotrophic growth) Achieve robust and stable cultures at a commercial scale Optimize system for algal productivity of fuel precursors (e.g., lipids) Sustainably and cost-effectively manage the use of land, water, and nutrients Identify and address environmental risks and impacts
Harvesting and Dewatering	 Investigate multiple harvesting approaches (e.g., sedimentation, flocculation, dissolved air floatation, filtration, centrifugation, and mechanized seaweed harvesting) Minimize process energy intensity Lower capital and operating costs Assess each technology option in terms of overall system compatibility and sustainability

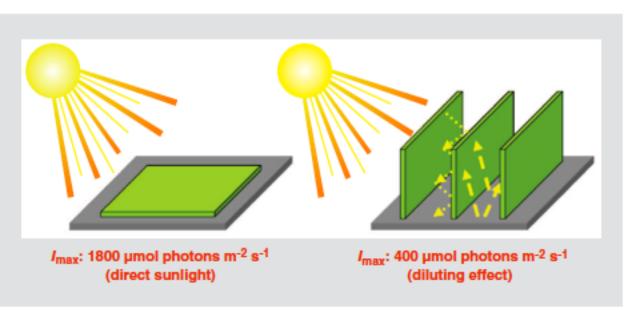
Methods of cultivation- State of the Art


Fence-like solar collector



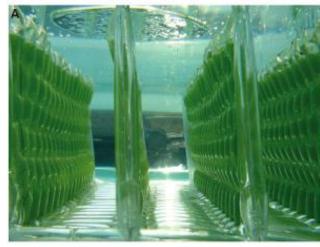
Raceway designs

More methods of cultivation



1000L helical bioreactor M. Borowitzka (Australia)

Horizontal tubular photobioreactor


Y. Chisti / Biotechnology Advances 25 (2007) 294–306

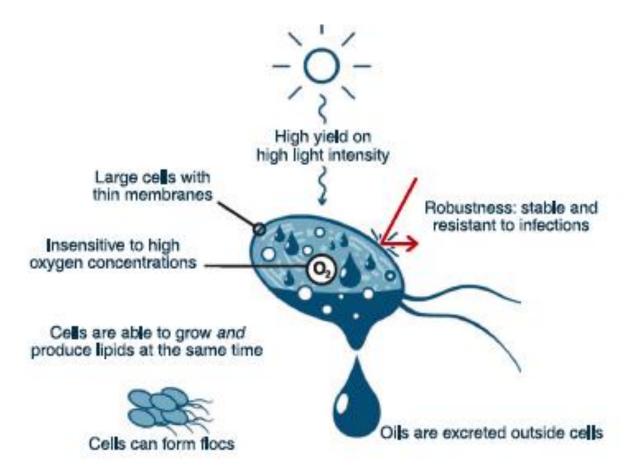
More methods of cultivation

René H. Wijffels¹ and Maria J. Barbosa²

Open (pond) and Closed (photobioreactor) Systems

Table 1. A comparison of open and closed systems for microalgae [18, 97].

	Open systems	Closed systems
Contamination risk	High	Low
CO ₂ losses	High	Low
Evaporative losses	High	Low
Light use efficiency	Poor	Excellent
Area/volume ratio	Low	High
Area required	High	Low
Process control	Difficult	Easy
Biomass productivities	Low	High
Investment costs	Low	High
Operation costs	Low	High
Harvesting costs	High	Relatively low
Scale-up	Easy	Difficult

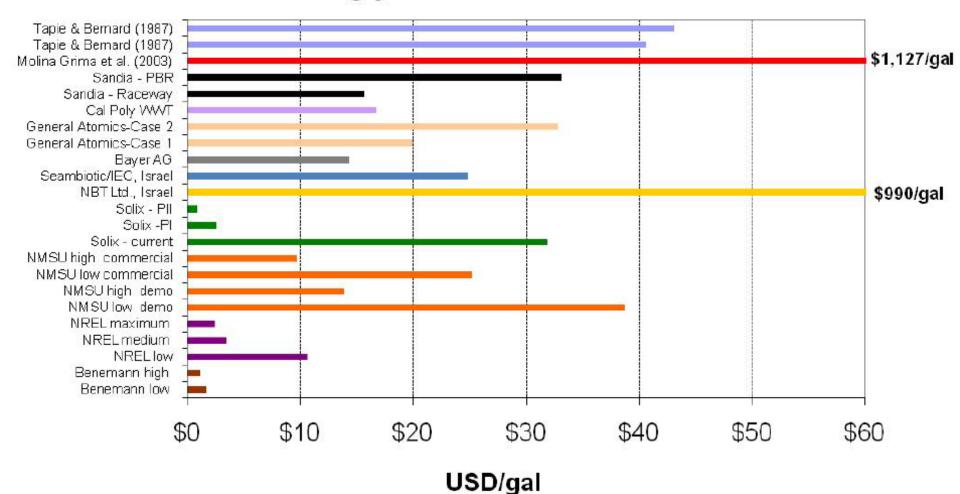

L. Xu et al. Eng. Life Sci. 2009, 9, No. 3, 178-189

Some Algae of Current *Mainstream* Interest

Oil content of some microalgae

Microalga	Oil content (% dry wt)	
Botryococcus braunii	25–75	
Chlorella sp.	28-32	
Crypthecodinium cohnii	20	
Cylindrotheca sp.	16–37	
Dunaliella primolecta	23	
Isochrysis sp.	25–33	
Monallanthus salina	>20	
Nannochloris sp.	20–35	
Nannochloropsis sp.	31–68	
Neochloris oleoabundans	35-54	
Nitzschia sp.	45–47	
Phaeodactylum tricornutum	20-30	
Schizochytrium sp.	50-77	
Tetraselmis sueica	15–23	

The Ideal Alga



An Outlook on Microalgal Biofuels

René H. Wijffels¹ and Maria J. Barbosa²

\$ of Algae Oil

Triglyceride Production Cost

'Commercial' Algae Production

- Health supplements (actual)
 - Earthrise (Spirulina; California)
 - Cyanotech (Spirulina, Hematococcus; Hawaii)
 - SunChlorella (Chlorella; Japan)
 - Far East BioTech (Chlorella; China)
 - Many small 'boutique' producers of Spirulina and Chlorella

- Biofuels (theoretical)
 - Algae Tec
 - Algenol
 - AquaFlow
 - Aurora
 - BioVantage
 - Blue Marble
 - Cellana
 - Green Star Products
 - Heliae Development LLC
 - HR Biopetroleum
 - Joule Biotechnologies
 - Kent Bioenergy Corporation
 - LiveFuels
 - Origin Oil
 - PetroAlgae
 - PetroSUn
 - Photon8
 - Phycal
 - Sapphire Energy
 - Seambiotic
 - Solazyme
 - Solix
 - Synthetic Genomics

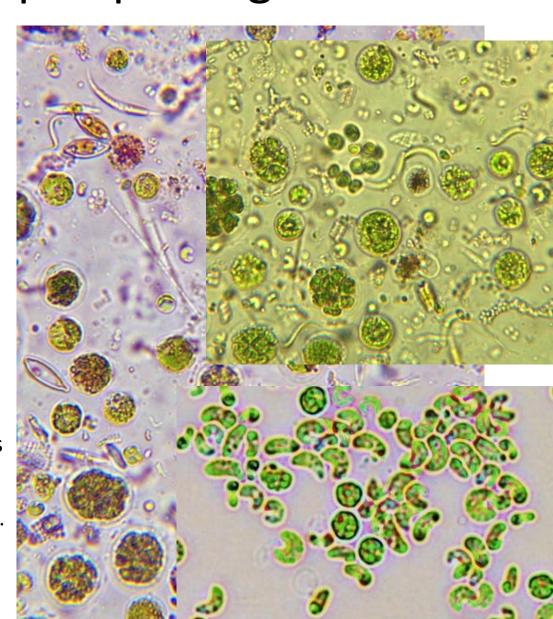
Physical, biological and ecological limitations

Physical

- Light diffusion into dense cultures
- Diffusion of heat
- Efficient gas exchange

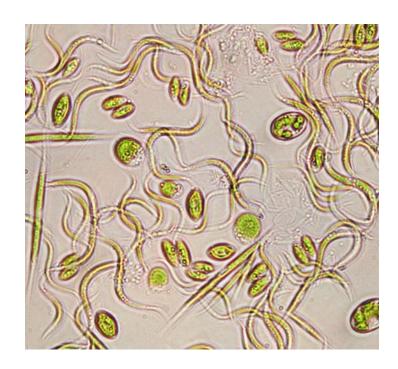
Biological

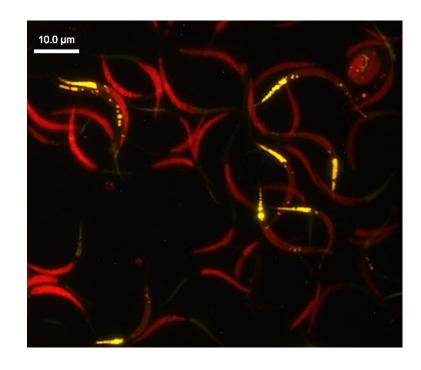
- Photo-inhibition
- Photo-oxidation
- Matching photosynthetic capacity with carbon fixation

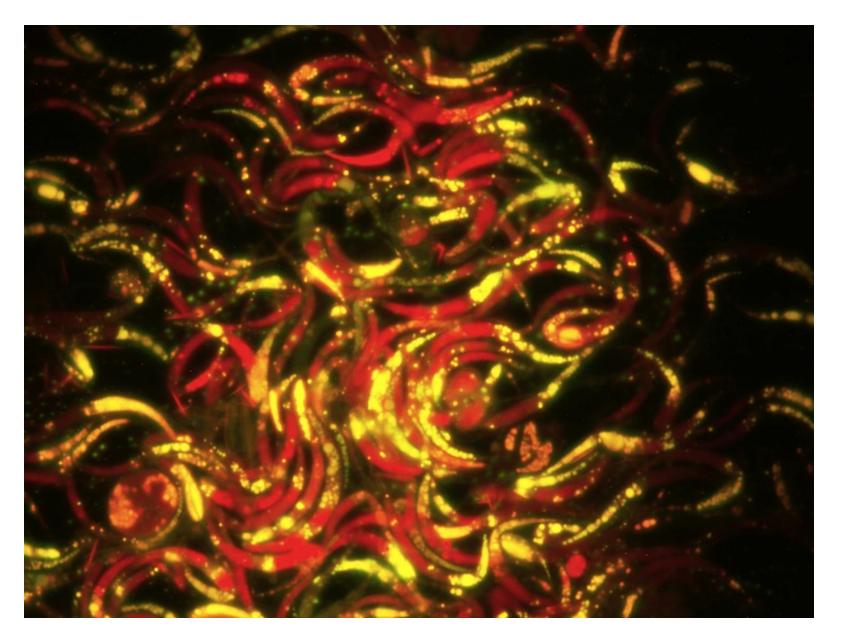

Ecological

- Increasing culture stability
 - Reducing impact of viruses and predators
- Sustainable water and nutrient supplies
 - Wastewater remediation (and utilization)

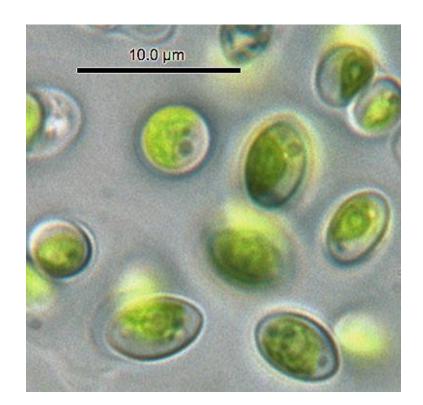
Current work in the laboratory-Phycoprospecting

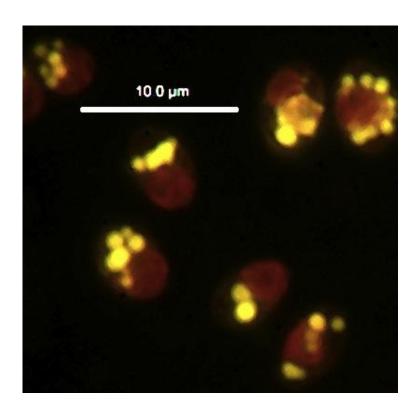

Algal Genera:

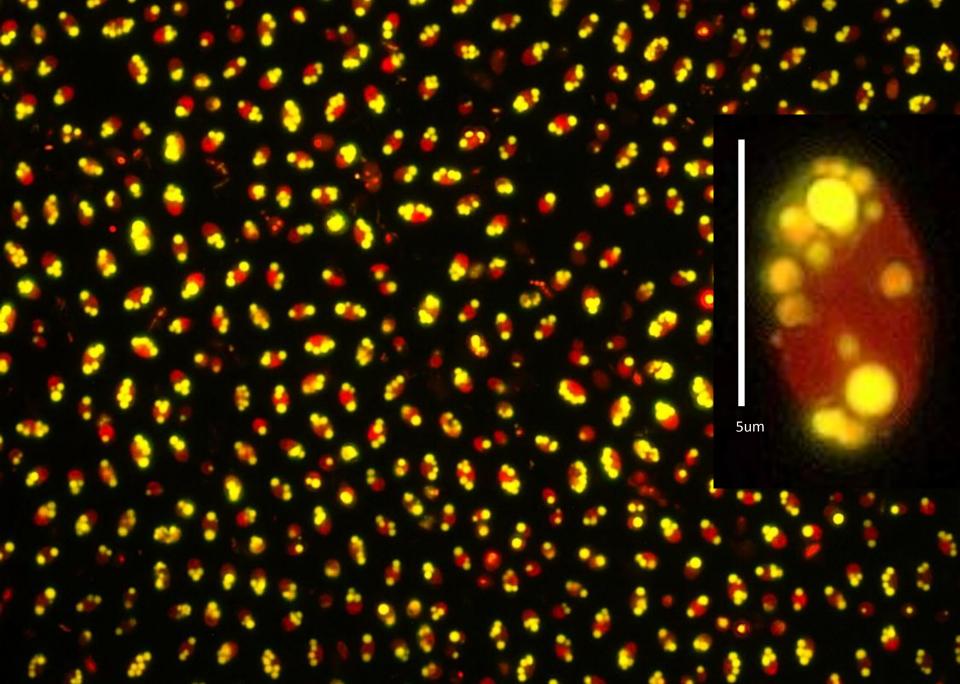

- Scenedesmus spp.
- Chlorella spp.
- Gloeochloris sp.
- Ankistrodesmus sp.
- Kirchneriella sp.
- Chlamydomonas sp.
- Selenastrum sp.
- Pandorina sp.
- Unidentified spp.
- Morphologically identified to genus level.
 - Prescott, G.W. 1978. How to Know the Freshwater Algae, 3rd Edition. WCB/McGraw-Hill, Boston, Massachussetts.


Ankistrodesmus sp.

- Dominant organism in 75% landfill leachate.
- Unique morphology
- Accumulates lipids

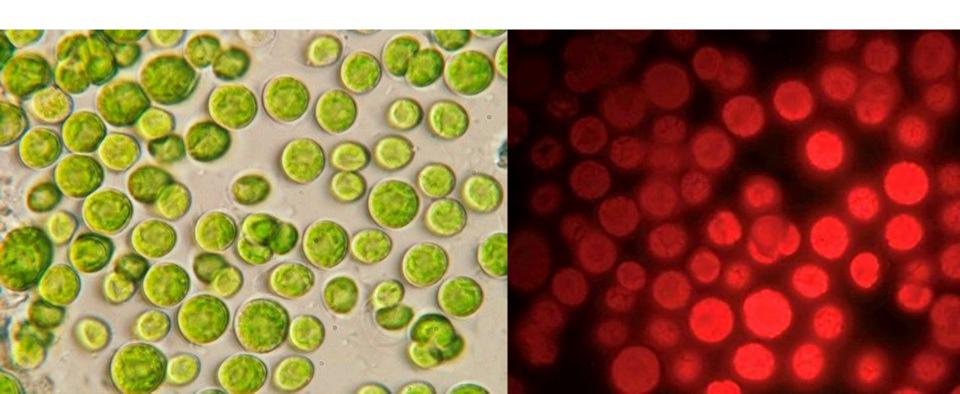


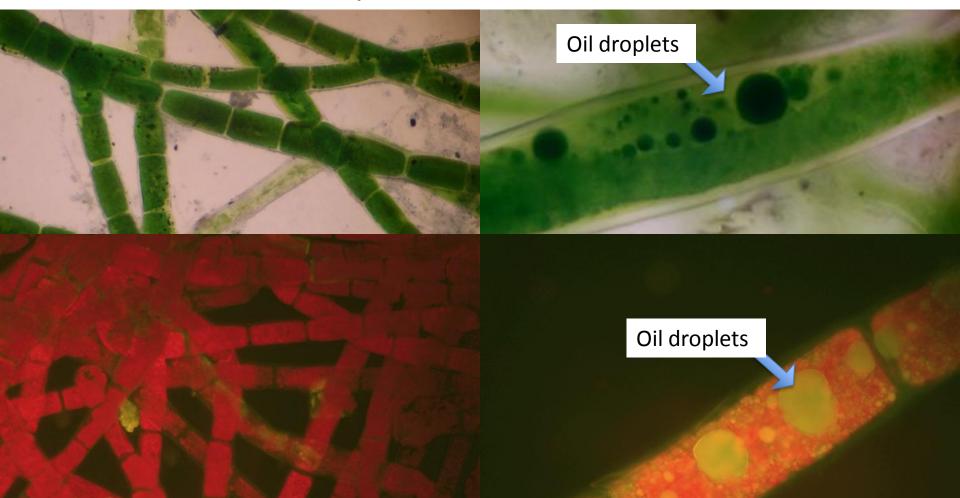

Ankistrodesmus sp.



Chlorella cf. ellipsoidea

- Present in all concentrations of leachate
- Dominant growth in low concentrations of leachate
- Accumulates lipids

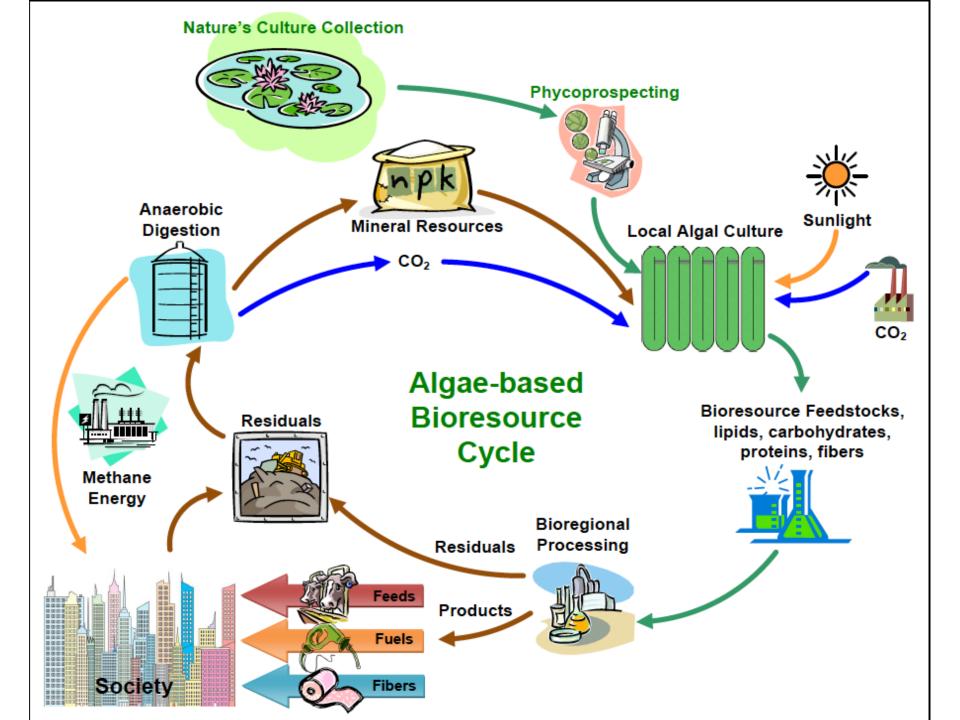



Scenedesmus cf. rubescens

- Single cell, can form colonies
- -~10um in diameter
- Settles well
- Appears not to accumulate oils

Rhizoclonium sp.

- Filamentous (easy to harvest)
- Stores oil!
- Need to develop method of cultivation



Outdoor Cultivation at Landfill

